

IMO GBS and IACS Harmonised Common Structural Rules

TSCF Shipbuilder Meeting
24 - 25 October 2013

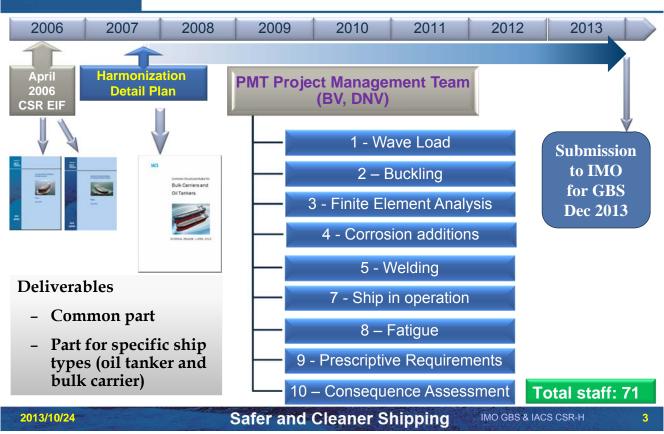
Philippe Baumans, IACS Project Management Team BV Director of Development Department

and

Cleaner

Shipping

IMO GBS AND IACS HARMONISED CSR



CONTENT

Introduction
Description of GBS
Application of GBS in CSR-H
Main GBS issues not directly covered in CSR-H
Consequence Assessment and Schedule

Introduction: Harmonisation of CSR

Description of GBS

- Origin
- Standards
- GBS Tiers
 - Tier I : Goals
 - Tier II: Main functional Requirements

Goal Based Standard: The origin

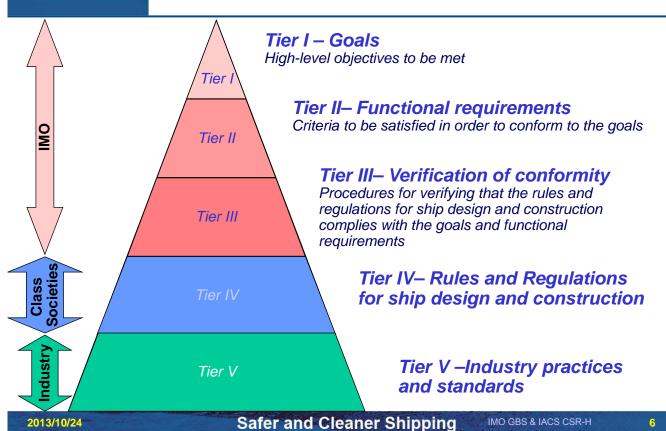
IMO Working Groups and Correspondence Group

4 important documents:

May 2010

- Amendments to SOLAS Chapter II-1 making the GBS standards for bulk carriers and oil tankers mandatory [Adopted IMO Res. MSC 290 (87)]
- International Goal-Based Ship Construction Standards for Bulk Carriers and Oil Tankers [Adopted IMO Res. MSC 287 (87)]
- Guidelines for Verification of Conformity with Goal-Based Ship Construction Standards for Bulk Carriers and Oil Tankers [Adopted IMO Res. MSC 296(87)]
- Guidelines for the Information to be included in a Ship Construction File (SCF) [Approved MSC.1/Circ.1343]

2013/10/24


Safer and Cleaner Shipping

IMO GBS & IACS CSR-H

5

IACS

The Goal Based Standards: "The Rule for Rules"

GBS Standards: Tier I - Goals

The Tier I goals are as defined in SOLAS regulation II-1/3-10:

"Ships shall be designed and constructed for a specified design life to be safe and environmentally friendly, when properly operated and maintained under the specified operating and environmental conditions, in intact and specified damage conditions, throughout their life."

- Safe and Environmentally friendly
- Environmentally friendly
- Safety
- Specified operating and environmental conditions
- Specified design life

2013/10/24

Safer and Cleaner Shipping

IMO GBS & IACS CSR-H

GBS Standards: Tier II 15 main functional requirements

- DESIGN
 - Design life
 - Environmental conditions
 - Structural strength
 - Fatigue life
 - Residual strength
 - Protection against corrosion
 - Structural redundancy
 - Watertight and weathertight integrity
 - Human element considerations

- CONSTRUCTION
 - Construction quality procedures
 - Survey during construction
- IN-SERVICE CONSIDERATIONS
 - Survey and maintenance
 - Structural accessibility
- RECYCLING CONSIDERATIONS
 - Recycling

Design transparency

GBS Standards: Tier II Functional Requirements : Guidance

Example of functional requirement

5 Residual strength

.1 Statement of intent

Confirm that the rules provide a reasonable level of residual strength after damage (e.g., collision, grounding and flooding).

5.2 Information and documentation requirements

- 5.2.1 Description of how ships designed to the rules with intact structure at net scantlings have sufficient ultimate strength to sustain flooding as defined in relevant IMO instruments.
- 5.2.2 Justification that ships designed to the rules have adequate residual strength to survive a casualty event. Include the following:
 - .1 Description of the methodology used to assess residual strength.
 - Description of the flooding scenarios and the corresponding structural damage. Explanation of the relationship of the flooding scenarios with IMO instruments.
 - Description of the environmental conditions and period of exposure representative of the sea states expected for collision and grounding scenarios, and justification why they are appropriate.
 - .4 Description of the acceptance criteria for residual strength of the ship in damaged condition, and justification if different from ultimate strength.
 - .5 Where it is determined that the rules inherently provide adequate residual strength, justification should be provided that demonstrates through analysis of a range of representative ship designs and loading conditions.
- 5.2.3 Description of how the residual strength assessment procedure has been validated with experimental and/or casualty history data.

5.3 Evaluation criteria

- 5.3.1 Can a ship designed to the rules sustain flooding as defined in relevant IMO instruments and survive with intact structure at net scantlings?
- 5.3.2 Does a ship designed to the rules have sufficient residual strength to survive a more significant casualty event (e.g., flooding with structural damage due to collision or grounding) under environmental conditions consistent with the likelihood of occurrence? Are the

2013/10/24

Safer and Cleaner Shipping

IMO GBS & IACS CSR-H

9

Summary of SOLAS Amendments II-1 Reg. 3-10 (GBS)

- Application: Oil tankers & Bulk carriers of 150 m in length and above
- Goals: Safe and environmentally friendly Ship design
- Structural Requirements:
 Goals shall be achieved through
 Structural Requirements of ROs (Class)
 conforming to GBS Functional Requirements
- Ship Construction File (SCF): Information on how the functional requirements have been applied in the ship design and construction to be kept on board

Enter into force on 1 Jan 2012, and apply to ships:

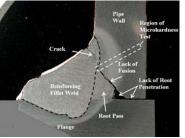
- 1. building contract on or after 1 July 2016 or
- 2. keel lay on or after 1 July 2017 or
- 3. delivery on or after 1 July 2020.

Application of GBS in CSR-H

- Items covered in CSR for Oil Tanker
- Gap Analysis
- New items not covered in CSR OT

IACS

Items covered in CSR-OT


• Wave scatter diagram: North Atlantic

- Design ship life: 25 years
 - Long term period for the wave loads
 - Corrosion model
 - Design fatigue life

Gap analysis

DESIG	ltem	Fully covered in CSR	Partially covered in CSR	Not covered in CSR
II.1	Design life	~		
II.2	Environmental conditions	~		
II.3	Structural strength	~		
11.4	Fatigue life	~		
II.5	Residual strength		~	
II.6	Protection against corrosion	~		
II.6.1	Coating life	~		
II.6.2	Corrosion addition	>		
11.7	Structural redundancy		>	
11.8	Watertight and weathertight integrity	~		
II.9	Human element considerations		>	
II.10	Design transparency		>	

Item	Fully covered in CSR	Partially covered in CSR	Not covered in CSR
CONSTRUCTION			
II.11 Construction quality procedures	~		
II.12 Survey	~		
IN-SERVICE CONSIDERATIONS			
II.13 Survey and Maintenance		~	
II.14 Structural accessibility			>
RECYCLING CONSIDERATIONS			
II.15 Recycling			~

2013/10/24

Safer and Cleaner Shipping

IMO GBS & IACS CSR-H

13

IACS

New items introduced in CSR-H

Residual strength after collision or grounding

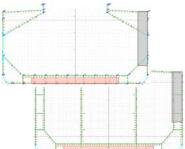
• Introduced in a new section (Pt 1, Ch 5, Sec 3)

Structural redundancy

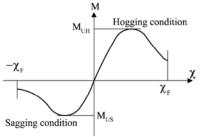
- Technical background is under development
- Conclusion: Ship structure, i.e. stiffened panels with scantlings in accordance with CSR have inherent redundancy and do not need reinforcement for this purpose

Fatigue Vibration due to whipping / springing

- Implicitly covered for a very large part of ships as it is included in the experience from operation
- Technical background Report is under development



Hull Girder Residual Strength


 Hull Girder Strength Assessment under damaged conditions due to collision and grounding

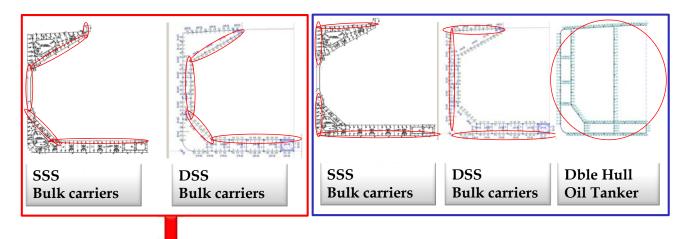
2613/10/24

Safer and Cleaner Shipping

IMO GBS & IACS CSR-H

15

IACS


Structural redundancy

- GBS Guidelines:
 - Does a ship designed to the rules have sufficient structural redundancy to survive localized damage to a stiffening member?
- "Localized damage" is understood as:
 - local permanent deformation,
 - cracking or
 - weld failure that might result from accidental damage within the cargo hold.
- "Stiffening member" is understood as a stiffener attached to a structural plating panel

Structural redundancy – Concerned structural elements

Two categories:

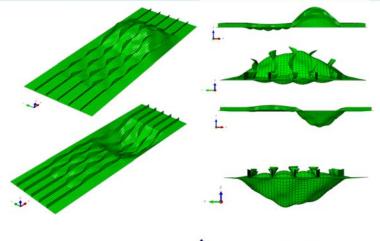
Elements already covered in CSR-BC. Methodology agreed in IMO documents

Safer and Cleaner Shipping

Structural redundancy criterion

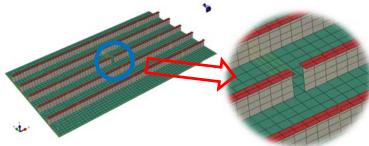
$$\eta_D = \frac{\sigma_D}{U_D} \le 1$$

$$\gamma = \frac{U_D/U_I}{\sigma_D/\sigma_I} \cdot \frac{1}{\eta_I} \ge 1$$


- U_D/U_I: Ultimate capacity ratio
- σ_D/σ_I : Working stress ratio
- η_I: Usage factor

I: Intact stage

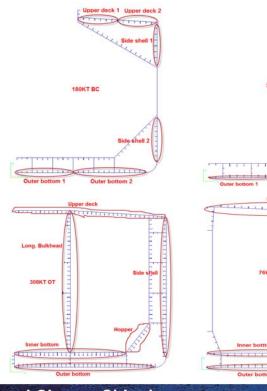
D: Damage stage


Localised damages

Permanent deformation

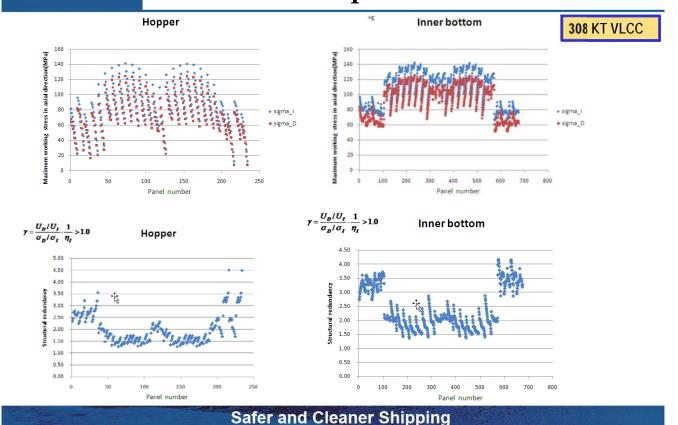
Overall initial stiffener deflection for a plate and stiffener induced imperfection

Web crack at stiffener end

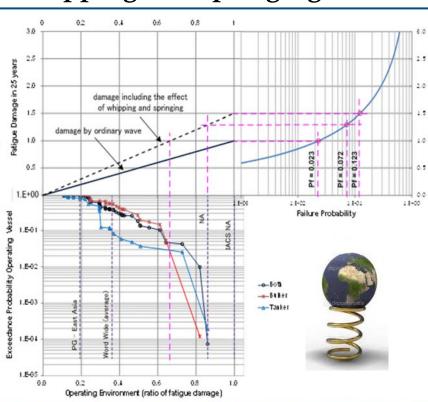


Safer and Cleaner Shipping

IACS


Numerical studies

Ship Type	Ship Size
	180 kT
Bulk Carrier	76 kT
	115 kT
	308 kT
Oil Tanker	76 kT
	51 kT


Structural redundancy Example of results

IACS

Fatigue due to whipping and springing

- Statistic on operating routes of existing bulk carriers and oil tankers
- 3.7% of oil tankers may be affected by the effect of whipping and springing
- Failure probability of ships which may be affected by whipping and springing: 2.3 and 7.2 % among population trading in North Atlantic
- 0.27% of oil tankers face risk of fatigue damage due to whipping and springing (0.27% = 3.7%*7.2%)
- CSRH fatigue sufficient safety margin against the effect of whipping and springing

Main GBS issues not directly covered in CSR-H

- Survey
- Human elements
- Ship construction file
- Recycling

IACS

Main GBS issues not directly covered Survey



- Survey for new construction and in-service operations
 - Not introduced in CSR-H text but references made to UR Z for:
 - General concept of surveys during construction and while in-service.
 - Construction and fabrication fit-up, welding and nondestructive testing.
 - Areas subject to special attention.
 - Tank strength and leak testing

Main GBS issues not directly covered **Human Elements**

- Addressed in newly developed IACS Guidelines
- IACS guidelines will include some Industry best practices
- CSR-H introduce and reference some human element considerations:
 - International Labour Organization (ILO) implemented by National Administrations or the Society on their behalf.
 - Lighting and ventilation arrangement considerations from the relevant requirements of International Conventions such as SOLAS and MLC 2006 Reg 3.1.
 - Noise consideration from the relevant requirements of SOLAS ChII-1, Reg. 3-12 and the mandatory document "The Code on Noise Levels On-board Ships" adopted at MSC.337(91).
 - Vibration consideration from the relevant statutory requirements such as MLC 2006 Reg 3.1.
 - Ship structure access.

2013/10/24

Safer and Cleaner Shipping

IMO GBS & IACS CSR-H

IACS

Main GBS issues not directly covered **Ship Construction File**

Aim: to facilitate safe operation, maintenance, survey, repair and emergency measures

- to be provided upon delivery of new bulk carriers and oil tankers contracted on or after 1 July 2016.
- to be kept on board the ship and/or 2.
- 3. to be kept ashore (i.e. Archive Centers)
- to be updated as appropriate throughout the ship's life 4.

Main GBS issues not directly covered Ship Construction File

Examples of information to be included in SCF

Information stored on board ship

- ➤ General arrangement, midship section, key construction plans, loading manual, coating technical file
- ➤ Documents to be developed especially to meet the requirements of SCF Guidelines (SCF-specific) such as:
 - note on design life on midship section
 - construction quality standard
 - list of materials used for hull structure

Information stored on shore archive

➤ Yard plans, lines plan, fatigue life calculation

2013/10/24

Safer and Cleaner Shipping

IMO GBS & IACS CSR-H

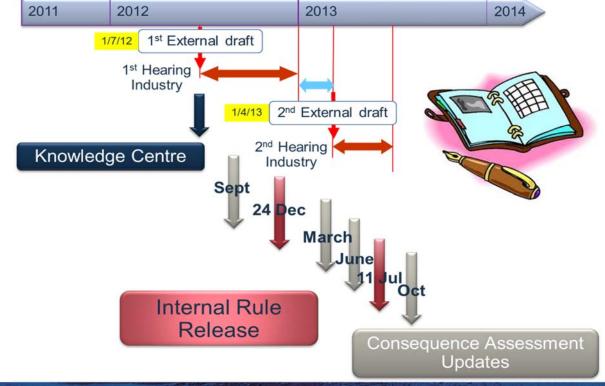
27

IACS

Main GBS issues not directly covered Recycling

- Recycling requires lists of materials used in the construction of the ship and later during any inservice modifications be maintained for future ship recycling purposes.
- The compilation and maintenance of the list of materials is included in the **Ship Construction File**.
- These lists are covered in IACS UR Z23 "Hull survey for new construction" and the UR Z10 series, respectively.
- Detailed recycling-related requirements are not included in CSR-H.
- List of materials to be assembled and maintained for future recycling:
 - Shipyards or Owners directly responsible for.
 - Class Societies will check for the existence of the SCF as indicated in the UR Z23 and UR Z10 series.

Consequence Assessment and Schedule



IACS

Harmonised CSR - Time Schedule

Consequence assessment ships

Bulk carriers

Oil tankers

ID	Туре	Lpp	В	Tsc	D	Dwt	ID	Туре	Lpp	В	Tsc	D	Dwt
BC-1	Capesize 1	285	46	18	25	180200	OT-1	VLCC 1	319	60	23	30	318000
BC-2	Capesize 2	284	45	18	25	180000	OT-2	VLCC 2	324	60	21	29	330000
BC-3	Capesize 3	293	50	18	25	205000	OT-3	Suezmax1	264	48	17	24	158000
BC-4	Baby Cape 1	240	43	15	21	114500	OT-4	Suezmax2	264	50	17	23	163000
BC-5	Baby Cape 2	248	43	15	20	115000	OT-5	Aframax 1	240	42	15	22	97000
BC-6	Panamax 1	225	32	14	20	82000	OT-6	Aframax 2	240	44	15	21	103000
BC-7	Panamax 2	223	32	15	20	81000	OT-7	Aframax 3	234	42	15	21	105000
BC-8	Handymax 1	183	32	13	18	53000	OT-8	Panamax1	220	32	15	21	76000
BC-9	Handymax 2	185	32	13	18	57000	OT-9	Panamax2	219	32	15	21	74000
BC-10	Handymax 3	185	32	14	18	48000	OT-10	Handymax1	176	32	13	18	51000

CA updates at each Rule Release

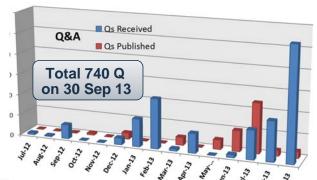
CA Report version available on IACS web site

2013/10/24

Safer and Cleaner Shipping

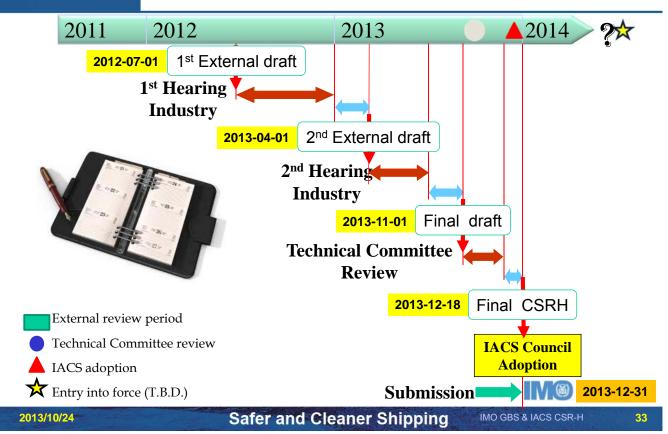
IMO GBS & IACS CSR-H

31

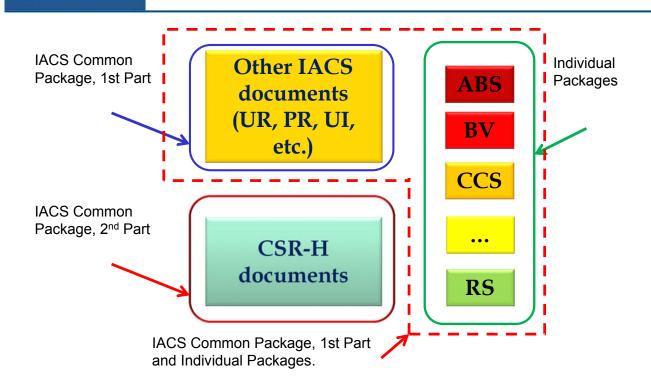

IACS

IACS Knowledge Centre

IACS knowledge centre address: http://www.iacs-csrkc.org.uk


- ► Accessible by anyone
- ► Comments and questions received from Industry
- ► Answers provided by IACS groups (HPTs, PMTs, Hull panel, etc)

2nd Hearing period ended on 31 Aug 2013



Harmonised CSR - Time Schedule

IACS

IMO Submission Packages

Goal based standard timetable agreed at MSC 87

1 Jan 2012	GBS SOLAS amendments enter into force and Standards take effect
31 Dec 2013	Deadline for receipt of initial verification requests at IMO
2014	MSC reviews progress made in GBS implementation
Jan 2016	Secretariat prepares documentation on all audits conducted for MSC 96 for final decision on conformity
May 2016	MSC 96 takes final decisions on conformity with GBS for all rules submitted
1 July 2016	GBS SOLAS amendments (II-1/3-10) become applicable

2013/10/24

Safer and Cleaner Shipping

IMO GBS & IACS CSR-H

35

Thank you for your attention!

